Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya.
Corresponding Author E-mail: nancysamoey@gmail.com
A decline in common bean production has been ascribed to climate change. The adoption of improved beans aims to increase productivity, profitability, and consumption, thus reducing food and nutrition insecurity in the country. The aim of this study was to determine the proximate composition, antinutrient content, mineral content, and bioaccessibility of zinc and iron in two improved bean varieties grown in Kenya; Faida (biofortified) and RM 01 (drought tolerant)). The protein content of RM 01 (22.48%) was significantly higher than the Faida bean variety (20.90%). RM 01 bean variety had higher crude fat (4.20%) and crude fiber (4.31%) content compared to Faida which had 3.78% and 3.31% for crude fat and crude fiber respectively. Faida recorded significantly higher levels of iron (61.5 mg/kg) and zinc (26.8 mg/kg) content. Faida beans also had significantly high levels of phytates (11.70 mg/g) and tannins (4.39 mg CE/g). Phytate to iron ratio for Faida was 17.08 and RM 01 was 15.19 while the phytate-to-zinc ratio was 42.26 and 35.36 for Faida and RM 01 respectively. The RM 01 bean variety had iron bioaccessibility of 35% and zinc bioaccessibility of 65% compared to the Faida bean variety which had bioaccessibility of 29% and 42% for iron and zinc respectively. In conclusion, RM 01 variety is a better source of iron, zinc, and protein compared to the Faida variety.
Bioaccessibility; Breeding; Biofortification; Common beans; Improved; Nutritional quality; Mineral deficiency