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Abstract
Food fortification is one strategy for addressing micronutrient deficiencies 
among the population groups at risk. Non-compliance with fortification 
standards hinders the success of fortification programs. This is due to a 
lack of techniques to rapidly check the amounts of the added fortificants. 
Fourier transform - near-infrared (FT-NIR) spectroscopy is a fast and reliable 
technique that would be used to ensure adherence to requirements. This 
study aimed to investigate the potential of using FT-NIR spectroscopy to 
predict the amount of retinol in fortified maize flour. 150 fortified maize flour 
samples were used in this study. Partial least squares regression (PLS-R) 
was used to build calibration models based on the retinol reference values 
obtained by high-performance liquid chromatography (HPLC), and fortified 
maize flour NIR spectra acquired from the FT-NIR spectrophotometer. Two 
calibration models were developed to predict retinol above and below 1.0 
mg/kg. The performance metrics of model one developed to predict retinol 
< 1.0 mg/kg were: R2

c = 0.81, RMSEE = 0.08, RPD = 2.29 and R2
v = 0.82, 

RMSEP = 0.09, RPD = 2.07 for the calibration and validation, respectively. 
The second model developed to predict retinol ≥ 1.0 mg/kg had the following 
performance metrics: R2

c = 0.93, RMSEE = 0.16, RPD = 3.58 and R2
v = 0.81, 

RMSEP = 0.22, RPD = 2.43 for the calibration and validation, respectively. 
Overall, the findings demonstrated that FT-NIR spectroscopy can be utilised 
to reliably predict retinol levels in fortified maize flour samples. FT-NIR 
spectroscopy, by replacing time-consuming and laborious wet chemistry 
laboratory procedures, has the potential to be used for rapid regulatory 
monitoring of fortification compliance for a large number of samples. 
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Introduction
Micronutrient deficiency is a major global health 
concern affecting more than two billion people 
across the world.1,2 People in developing countries 
frequently lack a variety of micronutrients.1 One of 
the major micronutrient deficiencies in Kenya is 
vitamin A deficiency (VAD).3,4 Approximately 24% of 
Kenyans are vitamin A deficient, with preschoolers 
being the most affected (53%).5

A regular intake of essential micronutrients can 
prevent or eliminate micronutrient deficiencies.6 

Increasing the availability of micronutrients in 
the diet through fortification is a cost-effective 
strategy to reduce the prevalence of micronutrient 
deficiencies.5,7 A suitable fortification vehicle should 
be extensively consumed and easily accessible 
to consumers.5,8 Maize (Zea mays L.) is widely 
considered a staple food to a large population in 
Kenya.9,10 Maize flour is used as a vehicle to deliver 
retinol, thiamin, riboflavin, niacin, pyridoxine, folic 
acid, iron, and zinc in the diet.11

Vitamin A is an essential micronutrient that must be 
supplied in the diet. Retinol is one of the naturally 
occurring active forms of vitamin A.12 Adequate 
provision of vitamin A results in reduced risk of 
vitamin A deficiency (VAD) hence decreased 
susceptibility to infections and impaired immune 
responses. The set tolerable upper intake level of 
retinol is at 3000 mg/day for adults and lower for 
children.13 Vitamin A fortificant in the form of retinyl 
palmitate is usually added to flour after milling.14,15 
According to East African Community,15 the minimum 
and maximum regulatory levels of retinol for maize 
flour fortification are 0.5 mg/kg and 1.4 mg/kg 
respectively.

Despite various interventions including fortification 
initiatives in many nations, vitamin A deficiency is still 
a common public health concern.5 The effectiveness 
of fortification as an intervention to curb micronutrient 
deficiencies is hindered by non-compliance with 
fortification standards, which is not easily determined 
due to a lack of techniques for quickly determining 
the quantity of fortificants added. Laboratory analysis 
is essential in monitoring successful fortification by 
checking compliance with fortification standards.16 
High-Performance Liquid Chromatography (HPLC) 
is a traditional technique that is used to quantify 
retinol in fortified maize flour as a way of monitoring 

compliance with fortification standards. However, 
due to the lengthy extraction operations, HPLC 
as a monitoring approach is time-consuming and 
tedious especially when a large number of samples 
are involved.17 Additionally, the use of HPLC for 
quantification of retinol in samples is highly prone 
to oxidation and many interfering compounds which 
is a source of likely errors in the method.18 There 
is a need, therefore, to develop a non-destructive, 
more accurate, and rapid technique for vitamin A 
determination such as the Fourier Transform Near-
Infrared (FT-NIR) spectroscopy.

FT-NIR spectroscopy is a rapid analytical tool which 
allows the development of calibration models that 
can be used to predict various parameters in various 
food matrices.19 Calibration models are based on 
the association between the NIR spectrum and 
the chemical constituents of the food product.20 
Successful NIR spectroscopy models have been 
developed for predicting starch,21 moisture,22 protein, 
oil, carbohydrates 23 and biochemical components 
such as amylose, lysine, tryptophan, and phytic acid 
in maize/corn flour samples.24

 
There are limited studies on the application of NIR 
spectroscopy to predict micronutrients such as 
vitamins. Most industries and research centres still 
rely on wet chemistry methods to obtain accurate 
estimates of vitamins since little research has been 
conducted on the application of NIR spectroscopy. 
This study therefore aimed to investigate the 
prospects of applying near-infrared spectroscopy to 
predict retinol amounts fortified maize flour.

Materials and Methods
Sample Collection and Preparation
This study included 150 samples of randomly 
selected packaged fortified maize flours. The 
samples were collected from retail outlets, wholesale 
shops and supermarkets in ten counties in Kenya. 
These counties included: Nairobi (n-21), Kiambu 
(n-18), Uasin Gishu (n-16), Nakuru (n-17), Elgeyo-
Marakwet (n-12), Kwale (n-11), Kilifi (n-10), 
Kisumu (n-15), Busia (n-13) and Mombasa (n-17)  
(Table 2). This was done to adequately represent 
millers from the Central, Eastern, Western and 
Coastal regions of Kenya. To avoid duplication, 
fortified maize flours from the same region under 
the same commercial brand names with similar 
batch numbers (identification numbers assigned to 
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products made in the same manufacturing run) were 
pooled together. Thus, the maize flours included 
in the study were those belonging to different 
commercial brand names and those with different 
batch numbers within a brand. This resulted in a 
total of 150 samples. The different samples were 
mixed thoroughly using a commercial blender 
(Omniblend 1-TM-767) to ensure homogeneity. 
The homogenized fortified maize flour samples 
were then put in airtight zip-lock bags and kept in 
carton boxes at room temperature until the day of 
analysis. Storing samples in airtight zip-lock bags 
and carton boxes was done to reduce the adverse 
effects of environmental factors such as oxygen and 
light respectively.

Retinol Quantification using HPLC
Extraction and quantification of retinol in the form 
of retinyl palmitate was carried out according to the 
method described by Chepkoech, Sila and Orina.25 
Two grams of flour was weighed into a centrifuge 
tube. This was followed by adding 15 ml of ethanol 
containing 0.1% (wt/vol) ascorbic acid and then 2 ml 
of 50 % (wt/vol) potassium hydroxide. The centrifuge 
tubes were capped, shaken well, and put in a water 
bath (Memmert WNB AC 230 V-50/60 HZ, Germany) 
at 80 ºC for 20 minutes. The tubes were shaken 
intermittently throughout this period. Using running 
water, the tubes were cooled before 15 ml of hexane 
containing 0.01% butylated hydroxytoluene (BHT) 
(wt/vol) was added. The contents of the tubes were 
thoroughly mixed on a vortex mixer for one minute, 
and after standing for two minutes, the contents of 
the tubes were again mixed for another minute. Two 
ml of cold water (1ºC) was added to each centrifuge 
tube and then the tubes were inverted 10 times. The 
samples were centrifuged at 1000 rpm for 10 min. 
Afterwards, the upper-organic layer was pipetted 
into a round-bottomed flask and the solvent was 
evaporated under vacuum at 40 ºC using a rotary 
vacuum evaporator (Hahnshin HS-2005S, water 
bath HS-3001, Korea). The residue was dissolved 
in 1 ml of methanol, and put in vials, ready for HPLC 
analysis. Twenty (20) µl of the sample was injected 
into reverse-phase HPLC (Shimadzu RF-20A, 
Japan) fitted with column C-18 ODS size 250 mm × 
4.6 mm × 0.5 µm. The mobile phase was methanol 
and water in a ratio of 98:2 and the flow rate was 
0.8 ml/min. A UV-visible diode-array detector (SPD 
- M20A) was used for the identification of retinol at 
324 nm. Concentrations of retinol were calculated 

using peak areas of the samples and the standard 
curves of the retinol standards.

NIR Spectral Data Acquisition
Acquisition of NIR spectral data was done following 
the procedure outlined by Wafula et.al.26 Samples 
were thoroughly mixed before each scan. Three 
(3) sub-samples were drawn from each sample 
then transferred to a plastic cup measuring 10 cm 
in diameter, and put to about 3 cm deep. The scan 
range for the sub-samples was 12000 cm-1 to 4000 
cm-1, and this was done using Bruker MPA (Multi-
Purpose Analyzer) FT-NIR spectrometer fitted 
with a semi-conductor lead sulphide detector (RT-
PbS). The integrating sphere was used to scan in 
reflectance mode at 30 OC with a resolution of 16 
cm-1. For each sample, three independent spectra 
(as determined during preliminary research) were 
recorded, similar to the collection of reference 
values using HPLC. The calibration models were 
then constructed using these data in triplicate. The 
average number of scans was 64 for each spectrum 
obtained. The wavelength range was narrowed to 
9000 cm-1 to 4000 cm-1 by visual assessment of the 
spectra, in order to remove noisy regions.

NIR Spectral Pre-processing
Spectral pre-processing was done using OPUS 
software 7.8, according to the method adapted 
from Bag, Srivastav and Mishra.27 This was done to 
reduce the prediction errors associated with spectral 
noise and the influences of temperature changes, 
particle size differences, light diffusion and baseline 
shifts on the NIR spectra while increasing signal 
from chemical information.28,29 Before calibration, 
the raw spectra were treated with a combination 
of multiple pre-processing techniques, including 
first derivative, second derivative, and standard 
normal variate (SNV). First derivative pre-processing 
technique was done to correct spectral baseline 
shifts while second derivative was used to improve 
spectral resolution. Standard normal variate (SNV) 
pre-processing technique was also employed to 
correct scatter in the spectra caused by path length 
variation occurring during scanning due to particle 
size differences between the samples. The most 
optimal pre-processing technique combination was 
first derivative + SNV. Additionally, before calibration, 
all spectral data were mean-centred. Mean centering 
(MC) was the basic pre-treatment used that reduced 
bias noise from all NIR spectra.
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Calibration and Validation Set Sample Selection
The most ideal outcome of this study would have 
been the successful development of a single model 
capable of predicting retinol levels in fortified maize 
flour samples over a wide range of concentrations. 
However, a single calibration model for predicting 
retinol in fortified maize flour had a poor predictive 
capability hence the decision to develop two separate 
models. The fortified maize samples were grouped 
into two, retinol < 1.0 mg/kg and retinol ≥ 1.0 mg/kg 
(retinol values from HPLC). This resulted in two data 
sets used in developing two (2) separate models. For 

the two groups of data, samples used for calibration 
and validation were selected. The calibration and 
validation data sets were selected randomly in a way 
that they covered the whole range of the reference 
data. Calibration for model I was developed using 
63 samples in the range of concentrations of 0 to 
0.62 mg/kg retinol, whereas calibration for model 
II was developed using 37 samples in the range of 
concentrations of 1.0 to 3.32 mg/kg retinol (Table 1). 
A validation set of 31 samples and 19 samples were 
used for external validation of calibration for model 
I and model II respectively (Table 1).

Table 1: Mean, range, and standard deviation of calibration and validation data sets

	                                                 Calibration set	                                             Validation set

	 n	 Range (mg/kg)	 Mean (mg/kg)	 SD	 n	 Range (mg/kg)	  Mean (mg/kg)	 SD

< 1.0 mg/kg	 63	 0-0.62	 0.34	 0.18	 31	 0-0.6	 0.28	 0.18
≥ 1.0 mg/kg	 37	 1.0-3.32	 1.47	 0.53	 19	 1.0-2.89	 1.34	 0.43

Model Development and Validation 
Model development and model validation using 
was done according to the method adapted from 

Wafula et.al 26, as shown in Figure 1. Calibration 
models I and II were generated using OPUS 
software 7.8. The calibrations were derived by 

Fig. 1: Process flowchart for calibration model development and validation
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performing partial least squares regression (PLS-R) 
which correlated retinol reference values (y) with 
the pre-processed NIR spectra (x), meaning that 
retinol (y) was predicted from NIR spectra (x) 
using PLS-R. The default optimisation command 
of the OPUS software program, which combined 
the number of PLS factors, wavenumber ranges, 
and pre-treatment techniques, was used to choose 
the optimal model. In this study, only 5% of outlier 
samples with high errors were excluded from the 
calibration set.  External validation was also done 
using the OPUS software to test the reliability of the 
models. For model validation, the samples used 
were independent of the calibration set.

Statistical Evaluation 
Microsoft Office Excel 2019 was used to calculate 
the means and standard deviations of the retinol 
values obtained from HPLC (reference values). 
The prediction potential of the developed FT-NIR 
calibration models was evaluated by statistical 
terms of coefficient of determination for calibration 
(R2c), and the root mean square error of estimation 
(RMSEE). The reliability of the generated models 
was assessed according to the coefficient of 
determination of validation (R2v), root mean square 
error of prediction (RMSEP), ratio of performance to 
deviation (RPD), and bias values. 

Table 2: HPLC retinol data used for FT-NIR spectroscopy modelling

County	 Sample size (n)	 Range (mg/kg)	 Mean (mg/kg)	 SD

Nairobi	 21 	 0.00 - 4.03 	 0.96 	 0.94
Kiambu	 18 	 0.06 - 1.92 	 0.65 	 0.42
Uasin Gishu	 16	 0.02 - 1.40 	 0.46 	 0.33
Nakuru	 17 	 0.00 - 1.67 	 0.45 	 0.53
Elgeyo-Marakwet	 12	 0.00 - 0.75 	 0.19 	 0.25
Kwale	 11 	 0.00 - 0.76 	 0.27 	 0.28
Kilifi	 10 	 0.00 - 0.72 	 0.17 	 0.22
Kisumu	 15 	 0.01 - 0.64 	 0.23 	 0.22
Busia	 13	 0.02 - 1.17 	 0.30 	 0.36
Mombasa	 17	 0.00 - 0.72 	 0.30 	 0.24

Results and Discussion
Retinol Content of the Fortified Maize Flours
The retinol content of fortified maize flours measured 
using the HPLC method are shown in Table 2. 
The total retinol content ranged between 0 mg/
kg ± 0.00 (not detectable) to 4.03 ± 0.82 mg/kg. 
Only 26.9 % of the analysed samples complied 
with the set standards for retinol (0.5-1.4 mg/kg), 
meaning that quite a number of samples did not 
meet the fortification requirements. This is somewhat 
comparable to the report of a study conducted by 
Khamila, Sila and Makokha 30 which showed that 
of the total samples evaluated, only 33.3% met the 
acceptable requirements for retinol, with levels in 
fortified maize flour samples ranging from below 
detectable levels to 1.2 mg/kg.

Samples with retinol concentrations lower than 
0.499 mg/kg were considered under-fortified. 
Whereas samples with retinol levels above 1.4 mg/

kg were termed over-fortified. Both of these sets of 
samples did not meet the regulatory requirements 
for compliance. Retinol is one of the micronutrients 
that is added to maize flour as a fortificant in 
the form of retinyl palmitate.14,15,31 Generally, the 
precision with which the chemical composition of the 
samples is determined using reliable and accepted 
reference procedures has a significant impact on the 
performance of the calibrations developed.32 

NIR Spectra of Fortified Maize Flour
The characteristic raw/unprocessed spectra of the 
fortified maize flour samples are shown in Figure 2. 
From this visual representation it can be seen that 
although all spectra had very similar shapes, there 
was variation in absorbance. NIR spectroscopy 
studies on various parameters of maize flour 
samples reported by Plumier 21; Chen, Delaney and 
Johnson 22 and Egesel and Kahriman 23 generated 
spectral data with a comparable shape to this study's 
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samples. The fortified maize flour spectra generally 
resembled those of other agricultural products such 
as wheat 28 and common beans.26

Absorption bands were linked to functional groups 
and compounds present in fortified maize flour 
samples. The dominant absorption bands included: 
9000 cm-1 - 8000 cm-1 (second overtone C-H 
stretching), 6800 cm-1 - 6600 cm-1 (first overtone 
N-H stretching; first overtone O-H stretching), 5300 
cm-1 - 5200 cm-1 (combination C-H stretching), 
5000 cm-1 - 4700 cm-1 (combination N-H stretching; 
combination O-H stretching), and 4545 cm-1 - 4065 

cm-1 (combination C-H stretching).33 The peaks in the 
spectra before pre-processing could be explained 
by quite high amounts of carbohydrates, proteins, 
and an substantial levels of moisture and vitamins 
in maize flour.34,35 The absorption bands in 5000 
cm-1 - 4700 cm-1 are associated with protein and 
moisture content in the samples while absorption at 
5300 - 5200 cm-1 is associated with polysaccharides 
such as amylose and amylopectin.  Retinol, a minor 
parameter, mainly consists of C-H-O molecular 
bonds.36 The absorption bands ranging from 4762 
cm-1 - 4386 cm-1 are believed to be related to C-H-O 
structures such as retinol.37

Fig. 2: Raw NIR spectra of fortified maize flour 

PLS-R Models Predicting Retinol in Fortified 
Maize Flours
Successful building of a single model that has a 
capacity to predict retinol levels in fortified maize 
flour samples over a wide range of concentrations 
would have been the most ideal outcome of this 
study. However, as illustrated in Figure 3 a single 
calibration model to predict retinol in fortified 
maize flour had a poor predictive capability as 
demonstrated by low R2 (R2

c = 0.20; R2
v = 0.18), 

low RPD (1.11, 0.92) and high RMSE (RMSEE 
= 0.70; RMSEP = 0.81) values. An acceptable 
model should have a high R2, a low RMSE and an 

RPD higher than 2.5.38 There are several actual 
calibration scenarios where it is difficult to develop 
a single universal calibration equation for the full 
population of interest, resulting in a lack of a suitable 
model for all components.39 Various approaches to 
address non-linearity such as the use of new pre-
treatment methods, the elimination of wavelengths, 
the addition of principal components/latent variables 
to the model or splitting the data into subsets or 
groups can be used.3 Based on this observation and 
knowledge, two separate models were developed to 
improve the model performance. 
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Table 3: Calibration and external validation statistics for prediction of retinol in fortified maize 
flour according to the models developed

	                      Single model	              Model I Retinol (< 1.0 mg/kg)	      Model II Retinol (≥ 1.0 mg/kg)

Statistics	 Calibration	 Validation	 Calibration	 Validation	 Calibration	 Validation

R2	 0.20	 0.18	 0.81	 0.82	 0.93	 0.81
RMSEE	 0.70	 -	 0.08	 -	 0.16	 -
RMSEP	 -	 0.81	 -	 0.09	 -	 0.22
Bias	 -	 0.0091	 -	 -0.0008	 -	 -0.0046
RPD	 1.11	 0.92	 2.29	 2.07	 3.58	 2.43
Rank	 8	 8	 7	 7	 8	 8

R2: coefficient of determination; RMSEE: root mean square error of estimation; RMSEP: root mean square 
error of prediction; RPD: ratio of performance to deviation.

Fig. 3: Calibration (a) and validation (b) of the correlation between reference values and FT-NIR 
predicted values of retinol in fortified maize flour (single model). R2: coefficient of determination; 

RMSEE: root mean square error of estimation; RMSEP: root mean square error of prediction; 
RPD: ratio of performance to deviation 
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It was observed that splitting the data into two 
groups, retinol < 1.0 mg/kg and retinol ≥ 1.0 mg/kg, 
resulted in models I and II, respectively that showed 
better prediction performance (Figures 3 and 4). The 
performance metrics for the single calibration model, 
models I and II are summarized in Table 3. This table 
shows that, in comparison to the single calibration 
model, the RMSEE and RMSEP values of models 
I and II were lower and the R2 values were higher.

The R2
c, RMSEE, and RPD before data splitting 

were 0.20, 0.70, and 1.11 respectively.  Model I on 
the other hand achieved R2

c, RMSEE, and RPD 
of 0.81, 0.08, and 2.29 respectively while model 

II showed equally good results with R2
c, RMSEE, 

and RPD of 0.93, 0.16 and 3.58 respectively  
(Table 2 and Figures 4 & 5). When the models were 
applied to predict the retinol contents of the validation 
sets, the prediction results for model I were: R2

v = 
0.82, RMSEP= 0.09, bias = -0.00088, and RPD = 
2.07 (Table 2 and Figure 4) while the prediction 
results for model II were: R2

v = 0.81, RMSEP= 
0.22, bias = -0.0046 and RPD = 2.43 (Table 2 and 
Figure 5). The reliability of the generated models 
was assessed according to R2

v, RMSEP, RPD, and 
bias values. The models generally depicted high 
R2 values, low RMSEP values, and low bias values 
hence reliable for application.19,23

Fig. 4: Calibration (a) and validation (b) of the correlation between reference values and FT-NIR 
predicted values of retinol (< 1.0 mg/kg) in fortified maize flour

Comparing the two models, external validation 
indicated that the prediction errors (RMSEP) for 
model II were slightly higher (0.22) than those of 
model I (0.09). Model II had a fewer number of 
samples and this is probably why it had slightly 

higher errors for the RMSEP. Further, retinol 
estimates were negatively biased (bias = - 0.00088 
and bias = -0.0046) for models I and II respectively 
(Figures 4 & 5). The bias value for an accurate 
calibration model should be close to 0.40 The average 
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difference between the measured or reference 
values (x) and the NIRS estimate (y) is known as 
bias.41 A positive score indicates that the model is 
generally overestimating the composition by that 
amount, whereas a negative value indicates that 
the model is underestimating the composition.41,42 
Although the models created would underestimate 
retinol amounts in fortified maize flour, the values 
were close to 0, indicating that the models developed 
were quite accurate and adequate, and hence can 
be adopted in food analysis.

Models I and II had R2v of above 0.8 which implies 
that these models were acceptable and usable 
for screening and some approximate calibrations 
according to de Girolamo, Cervellieri and Visconti.28 
The RPD values, 2.07 (model I) and 2.43 (model 

II), according to Xia, Li, Zhao and Chang 43 indicate 
that model I had slightly lower robustness. When 
the prediction accuracy of calibration models is 
relatively insensitive to unknown changes in external 
factors, the model is said to be robust.44 Temperature 
fluctuations, shifts in wavelength, and changes in 
detector stability over time are some of the factors 
that could have impacted model performance. The 
RPD tests the robustness of a model by assessing 
how well the developed model predicts the retinol in 
the validation set, and the higher its value, the better 
the model's prediction capacity.28,43,45 Regression 
models with RPD values ≥ 6.5 are excellent and 
suitable for process control or any application.43 
Chang, Laird and Mausbach 46 however contrast 
by mentioning that calibration models with RPD > 2 
are considered satisfactory.

Fig. 5: Calibration (a) and validation (b) of the correlation between reference values and FT-NIR 
predicted values of retinol (≥ 1.0 mg/kg) in fortified maize flour

Limited studies have been done on applying NIR 
spectroscopy to predict retinol in maize flour. For 

this reason, the discussion of this study's findings 
was mostly limited to NIR studies on the prediction 
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of retinol in various food matrices and the prediction 
of other parameters in maize flour. The work of 
Kahrıman, Onac, Oner and Egesel47 obtained the 
following prediction performance of fat-soluble 
secondary metabolites in maize flour, carotenoids 
(R2

v = 0.721; RMSECV = 3.069) and tocopherol (R2
v = 

0.515; RMSECV = 2.0943). The models presented in 
the current study showed higher R2

v values and lower 
prediction errors than those of  Kahrıman, Onac, 
Oner and Egesel 47 which applied NIR spectroscopy 
to predict carotenoids and tocopherol in maize flour. 
Furthermore, Soulat, Andueza, Graulet and Ferlay 
48 reported a lower coefficient of determination (R2

v 
= 0.34) for the prediction of retinol from cow’s milk. 
The prediction errors reported by Soulat, Andueza, 
Graulet and Ferlay 48 were slightly higher (RMSEP 
= 0.15) than those of model I (RMSEP = 0.09), and 
slightly lower than those of model II (RMSEP = 0.22).  
Altogether, the results of this study and those of 
the studies discussed here demonstrate that there 
is potential to successfully use NIR spectroscopy 
to rapidly assess retinol in different food matrices.

Conclusions 
The range of retinol values used as reference values 
in this study (0 mg/kg ± 0.00 (not detectable) to 4.03 
± 0.82 mg/kg) comprised the retinol levels that may 
be routinely encountered in fortified maize flour in 
the market. Approximately 26.9% of the analysed 
samples met the retinol fortification standards  
(0.5-1.4 mg/kg), indicating that a significant 
proportion of samples did not meet the fortification 
requirements. Initially, a single calibration model 
showed poor predictive performance. The model 
predictive performance was improved by splitting 
the dataset, hence developing two separate models. 
The model developed for predicting retinol ≥ 1.0 mg/
kg illustrated slightly better prediction performance 

than the model for predicting retinol < 1.0 mg/kg. The 
models developed in this study had high R2 values 
and low errors. FT-NIR spectroscopy can thus be 
utilised to adequately estimate retinol in fortified 
maize flour. NIRS, by replacing time-consuming 
and laborious wet chemistry laboratory procedures, 
has the potential to be used for rapid regulatory 
monitoring of fortification compliance for a large 
number of samples. 

Recommendations 
The robustness of the models can be improved in 
the future by the addition of more calibration data. 
Furthermore, linear discriminant analysis (LDA) 
studies should be done to generate an algorithm 
that will be used to differentiate the two prediction 
models developed (model I used to predict retinol 
< 1.0 mg/kg and model II used to predict retinol ≥ 
1.0 mg/kg). This will help determine which of the 
two models is to be employed for predicting the 
amount of retinol in a specific unknown sample. 
FT-NIRS-based models for predicting B-vitamins 
in fortified maize flour should also be developed to 
allow quick analysis.
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